Optical Components

OPTICAL COMPONENTS WHITE PAPERS & APPLICATION NOTES

  • Large-Format, Narrow Band Pass Filters (NBPF) – A Uniformity Challenge
    Large-Format, Narrow Band Pass Filters (NBPF) – A Uniformity Challenge

    Within so many diverse optical filtering applications, large-format (>100 mm diameter), narrow bandpass filters (NBPF) are required to be used alongside large collection optics in order to facilitate specific and selective analysis of a phenomena or the substance of interest.

  • Utilizing Diffractive Optics

    This application note presents multiple equations and recommendations for use with each type of available diffractive optic from LASER COMPONENTS.

  • Miniaturize Your Optical System Into A Photonic Integrated Circuit
    Miniaturize Your Optical System Into A Photonic Integrated Circuit

    Embedding photonic functionalities into an integrated optical chip can often simplify and reduce the size of a system. This white paper introduces the basic concepts of photonic integration with a goal to help the reader understand how it can improve optical systems.

  • Thin-Film Optical Components For Use In Non-Linear Optical Systems
    Thin-Film Optical Components For Use In Non-Linear Optical Systems

    Bio-imaging and detection techniques that use non-linear optical (NLO) phenomena have led to great advancements, such as super-resolution images, label-free visualization of naturally occurring biomolecules, and greater freedom for working with in-vivo samples. This white paper discusses the importance of choosing thin-film optical components for NLO systems to ensure optimal signal strength, resolution, and image quality.

More Optical Components White Papers & Application Notes

OPTICAL COMPONENTS PRODUCTS

SCHOTT Fiber Optic Faceplates SCHOTT Fiber Optic Faceplates

SCHOTT Lighting and Imaging offers a series of fiber optic faceplates designed for high-resolution, “zero thickness” image transfer applications such as CCD and CMOS coupling, LCD and OLED displays, image intensification, remote viewing, field flattening, and X-ray imaging. 

Aviation Lighting Aviation Lighting

The perfect lighting sets the atmosphere of any aircraft cabin. SCHOTT Lighting and Imaging aims to use natural lighting with different intensities and color shades to create a perfect lighting mix with an unmatched overall impression and atmosphere.

Defense And Security Defense And Security

SCHOTT Lighting and Imaging offers high tech materials and components for enabling the defense and security industry to develop night vision, display, sensor, and other technologies that are smaller, lighter, and more effective.

Coated Laser Optics Coated Laser Optics

LASER COMPONENTS designs and manufactures dielectric coatings for a wide range of laser optics applications. The laser optics provided by LASER COMPONENTS are mostly OEM products that meet the individual customer's specifications; the products include substrates and dielectric coatings. 

Medical Illumination Medical Illumination

SCHOTT Lighting and Imaging delivers fiber optic and LED technologies to help redefine the boundaries of medical innovation, and provide deeper insights in helping medical experts see more of what is relevant to their diagnoses and therapies.

HermeS® Hermetic Through Glass Via (TGV) Wafer For MEMS Devices HermeS® Hermetic Through Glass Via (TGV) Wafer For MEMS Devices

SCHOTT Electronic Packaging offers the HermeS® glass substrate wafer with hermetically sealed solid “Through Glass Vias” (TGV) designed to enable fully gastight and long-term robust enclosures for MEMS devices such as industrial hermetic MEMS sensors, medical MEMS, and RF MEMS. It features fine-pitched vias that allow for reliable conduction of electrical signals and power into and out of MEMS devices.

Diffractive Optical Elements (DOEs) For Beam Splitting Diffractive Optical Elements (DOEs) For Beam Splitting

Diffractive optical elements (DOEs) from LASER COMPONENTS are designed to be used as multi-spot beam splitters in beam shaping, and beam profile modifications with lasers and high power lasers. Using diffractive elements for beam splitting is advantageous in the instance of needing one element to produce several beams, or when very exact power separation is required. DOEs can also achieve precise positioning to create holes at clearly defined and accurate distances.

Sensors, Metrology, And Control Applications Sensors, Metrology, And Control Applications

SCHOTT Lighting and Imaging has the capabilities and knowledge available to assist customers in finding the perfect fiber optic solution for sensor, metrology, and control applications. SCHOTT specialists will work with customers to jointly draw up an action plan addressing each stage leading to series production.

More Optical Components Products

OPTICAL COMPONENTS NEWS

More Optical Components News

OPTICAL COMPONENTS / OPTICS ABOUT DOCUMENT

Optics

Optics is an interesting subset of physics. It is the study of light and how it can be used in various industries from measurements to biology as well as photography to navigation. Optics is a fascinating field and we are just beginning to scratch the surface with what we know. One of the most interesting developments in optics is the use of fiber optics in the transmission of data. Light is used to transmit data across long distances and this has proved to be efficient as well as inexpensive.

Light is the fasted trailing particle in the universe and it is radiated from one point to the next in the form of waves. Light in a vacuum can travel at an astonishing 300 million meters per second, a speed that would take it to the moon in just about one second. Optics is primarily concerned with the use of light and how the light can be reflected, refracted, bent or manipulated in just about any way. The unique nature of light gives tremendous benefits in using it in various industries. Optics is no one of the ways where light can be used to store data. It seems that anything electrons have done in the past, light waves are able to do, just able to do it faster. In the beginning copper cables were used to transmit electrical pulses in network data transfer. While at that time it was a breakthrough, it was comparatively slow to the movement of light through fiber optics. Once fiber optics replaced, broad band speeds were achieved. All thanks to optics. The uses of optics can advance further with headway being made in fields of defense as well as medicine. Optics are now being used to return sight to the blind as well as create sight for robots.